The Telegraph: What has Singularity University brought the world?

This is an article (with a short video) from The Telegraph website.  The article is called What has Singularity University brought the world? The research and education taking place at Singularity University promises (quite literally) to help in making our world a better place and they’re already delivering.  It’s an exciting time to be alive!


What has Singularity University brought the world?

In short… privately owned cars which anyone can rent, 3D printers for astronauts, meat that does not kill animals, drones that can deliver aid to disaster zones and the world’s first DNA laser printer

A test of the 3-D printer in a microgravity-like environment simulated on an airplane that flies parabolas. Credit: Made in Space Welcome to one of the most elite institutions: Singularity University

A test of the 3-D printer in a microgravity-like environment simulated on an airplane that flies parabola Photo: Made in Space

• Getaround – graduate year 2009

Getaround is a car sharing marketplace where people can offer their own cars for rent to make some extra money. The renter uses an app to unlock the car door without ever having to see its owner.

It won one of the biggest technology competitions in the world, TechCrunch Disrupt NYC, in 2011, and is now the largest peer-to-peer car-sharing service. It has raised more than $20 million in funding.

• Made in Space – graduate year 2010

The team has developed a 3D printer which allows astronauts to design and build their own tools and shuttle parts on the International Space Station.

They received $125,000 from Nasa and its approval to send the printer up to ISS this month aboard the SpaceX CRS-4

• Matternet – graduate year 2012

The company is building unmanned aerial drones to deliver aid and medicine to developing countries, congested cities and places difficult to reach by car. These can range from a Haitian earthquake zone to a remote African village. It received $500,000 investment from venture capitalist firm Andreessen Horowitz.

• Modern Meadow – graduate year 2012

The environmentally-conscious company is producing meat and leather without killing animals. It uses 3D printers and tissue engineering to grow meat in a laboratory, in an answer to the world’s unsustainable meat consumption.

The firm plans to sell lab-grown “leather” – and eventually meat – to consumers within the next few years. In June it received $10million in funding from a billionaire investor based in Hong Kong.

• Cambrian Genomics – graduate year 2012

A genetics startup created the world’s first DNA laser printer which in turn produced the world’s first synthetic genome. Rather than printing with traditional ink, it custom-prints with genetic code using lasers.

This enable scientists to make corrections and fixes to ensure a child does not receive a gene for breast cancer, cystic fibrosis, Huntington’s disease, or any other single-gene disorders.

Clients include the US military, which wants DNA to create new types of biomaterials.

 

This article can also be found here.

 

NASA and Singularity University

This isn’t an article so much as it is a memo posted on the NASA website.  Basically, the ‘article’ states that NASA supports the Singularity University endeavor.  This is actually kind of old news (from 2009), but part of the mission of Dawn of Giants is to convince people of the need to take transhumanism and the idea of the technological singularity seriously.  Maybe the support of government agencies like NASA and DARPA will help to this end.  


NASA Ames Becomes Home To Newly Launched Singularity University

Rachel Prucey – Ames Research Center, Moffett Field, Calif.

Denise Vardakas – Singularity University, Moffett Field, Calif.

Feb. 03, 2009

MOFFETT FIELD, Calif., — Technology experts and entrepreneurs with a passion for solving humanity’s grand challenges, will soon have a new place to exchange ideas and facilitate the use of rapidly developing technologies.

NASA Ames Research Center today announced an Enhanced Use Lease Agreement with Singularity University (SU) to house a new academic program at Ames’ NASA Research Park. The university will open its doors this June and begin offering a nine-week graduate studies program, as well as three-day chief executive officer-level and 10-day management-level programs. The SU curriculum provides a broad, interdisciplinary exposure to ten fields of study: future studies and forecasting; networks and computing systems; biotechnology and bioinformatics; nanotechnology; medicine, neuroscience and human enhancement; artificial intelligence, robotics, and cognitive computing; energy and ecological systems; space and physical sciences; policy, law and ethics; and finance and entrepreneurship.

“The NASA Ames campus has a proud history of supporting ground-breaking innovation, and Singularity University fits into that tradition,” said S. Pete Worden, Ames Center Director and one of Singularity University’s founders. “We’re proud to help launch this unique graduate university program and are looking forward to the new ideas, technologies and social applications that result.”

Singularity University was founded Sept. 20, 2008 by a group of leaders, including Worden; Ray Kurzweil, author and futurist; Peter Diamandis, space entrepreneur and chairman of the X PRIZE Foundation; Robert Richards, co-founder of the International Space University; Michael Simpson, president of the International Space University; and a group of SU associate founders who have contributed time and capital.

“With its strong focus on interdisciplinary learning, Singularity University is poised to foster the leaders who will create a uniquely creative and productive future world,” said Kurzweil.

CLARIFICATION:

NASA Ames would like to eliminate confusion that might have arisen concerning NASA personnel as “Founders” of Singularity University in the Feb. 3, 2009 news release, “NASA Ames Becomes Home To Newly Launched Singularity University.”

NASA Ames Center Director S. Pete Worden hosted SU’s Founders Conference on Sept. 20, 2008 at NASA Ames. On NASA’s behalf he and other Ames personnel provided input to SU’s founders and encouraged the scientific and technical discussions. Neither Dr. Worden nor any other NASA employee is otherwise engaged in the University’s operation nor do any NASA Ames employees have personal or financial interests in Singularity University. As with other educational institutions, NASA employees may support educational activities of SU through lectures, discussions and interactions with students and staff. NASA employees may also attend SU as students.

For more information about Singularity University, visit:

http://www.singularityu.org

For more information about NASA programs, visit:

http://www.nasa.gov/


 

This can also be found at http://www.nasa.gov/centers/ames/news/releases/2009/09-11AR.html

Success.com – Ray Kurzweil: The Exponential Mind

Chris Raymond at success.com interview Ray Kurzweil.  The article is called Ray Kurzweil: The Exponential Mind.  It follows the usual Kurzwelian interview parameters (a little background, explain exponential growth with examples, discuss where technology is taking us), but it also goes into some of the things his critics have to say and talks a bit about Kurzweil’s new role at Google.  


 

Ray Kurzweil: The Exponential Mind

The inventor, scientist, author, futurist and director of engineering at Google aims to help mankind devise a better world by keeping tabs on technology, consumer behavior and more.

Chris Raymond

Ray Kurzweil is not big on small talk. At 3:30 on a glorious early summer afternoon, the kind that inspires idle daydreams, he strides into a glass-walled, fifth-floor conference room overlooking the leafy tech town of Waltham, Mass.

Lowering himself into a chair, he looks at his watch and says, “How much time do you need?”

It doesn’t quite qualify as rude. He’s got a plane to catch this evening, and he’s running nearly two hours behind schedule. But there is a hint of menace to the curtness, a subtle warning to keep things moving. And this is certainly in keeping with Kurzweil’s M.O.

“If you spend enough time with him, you’ll see that there’s very little waste in his day,” says director Barry Ptolemy, who tailed Kurzweil for more than two years while filming the documentary Transcendent Man. “His nose is always to the grindstone; he’s always applying himself to the next job, the next interview, the next book, the next little task.”

It would appear the 66-year-old maverick has operated this way since birth. He decided to become an inventor at age 5, combing his Queens, N.Y., neighborhood for discarded radios and bicycle parts to assemble his prototypes. In 1965, at age 17, he unveiled an early project, a computer capable of composing music, on the Steve Allen TV show I’ve Got a Secret. He made his first trip to the White House that same year, meeting with Lyndon Johnson, along with other young scientists uncovered in a Westinghouse talent search. As a sophomore at MIT, he launched a company that used a computer to help high school students find their ideal college. Then at 20, he sold the firm to a New York publisher for $100,000, plus royalties.

The man has been hustling since he learned how to tie his shoes.

Though he bears a slight resemblance to Woody Allen—beige slacks, open collar, reddish hair, glasses—he speaks with the baritone authority of Henry Kissinger. He brings an engineer’s sense of discipline to each new endeavor, pinpointing the problem, surveying the options, choosing the best course of action. “He’s very good at triage, very good at compartmentalizing,” says Ptolemy.

A bit ironically, Kurzweil describes his first great contribution to society—the technology that first gave computers an audible voice—as a solution he developed in the early 1970s for no problem in particular. After devising a program that allowed the machines to recognize letters in any font, he pursued market research to decide how his advancement could be useful. It wasn’t until he sat next to a blind man on an airplane that he realized his technology could shatter the inherent limitations of Braille; only a tiny sliver of books had been printed in Braille, and no topical sources—newspapers, magazines or office memos—were available in that format.

Kurzweil and a team that included engineers from the National Federation for the Blind built around his existing software to make text-to-speech reading machines a reality by 1976. “What really motivates an innovator is that leap from dry formulas on a blackboard to changes in people’s lives,” Kurzweil says. “It’s very gratifying for me when I get letters from blind people who say they were able to get a job or an education due to the reading technology that I helped create…. That’s really the thrill of being an innovator.”

The passion for helping humanity has pushed Kurzweil to establish double-digit companies over the years, pursuing all sorts of technological advancements. Along the way, his sleepy eyes have become astute at seeing into the future.

In The Age of Intelligent Machines, first published in 1990, Kurzweil started sharing his visions with the public. At the time they sounded a lot like science fiction, but a startling number of his predictions came true. He correctly predicted that by 1998 a computer would win the world chess championship, that new modes of communication would bring about the downfall of the Soviet Union, and that millions of people worldwide would plug into a web of knowledge. Today, he is the author of five best-selling books, including The Singularity Is Near and How to Create a Mind.

This wasn’t his original aim. In 1981, when he started collecting data on how rapidly computer technology was evolving, it was for purely practical reasons.

“Invariably people create technologies and business plans as if the world is never going to change,” Kurzweil says. As a result, their companies routinely fail, even though they successfully build the products they promise to produce. Visionaries see the potential, but they don’t plot it out correctly. “The inventors whose names you recognize were in the right place with the right idea at the right time,” he explains, pointing to his friend Larry Page, who launched Google with Sergey Brin in 1998, right about the time the founders of legendary busts Pets.com and Kozmo.com discovered mankind wasn’t remotely ready for Internet commerce.

How do you master timing? You look ahead.

“My projects have to make sense not for the time I’m looking at, but the world that will exist when I finish,” Kurzweil says. “And that world is a very different place.”

In recent years, companies like Ford, Hallmark and Hershey’s have recognized the value in this way of thinking, hiring expert guides like Kurzweil to help them study the shifting sands and make sense of the road ahead. These so-called “futurists” keep a careful eye on scientific advances, consumer behavior, market trends and cultural leanings. According to Intel’s resident futurist, Brian David Johnson, the goal is not so much to predict the future as to invent it. “Too many people believe that the future is a fixed point that we’re powerless to change,” Johnson recently told Forbes. “But the reality is that the future is created every day by the actions of people.”

Kurzweil subscribes to this notion. He has boundless confidence in man’s ability to construct a better world. This isn’t some utopian dream. He has the data to back it up—and a team of 10 researchers who help him construct his mathematical models. They’ve been plotting the price and computing power of information technologies—processing speed, data storage, that sort of thing—for decades.

In his view, we are on the verge of a great leap forward, an age of unprecedented invention, the kinds of breakthroughs that can lead to peace and prosperity and make humans immortal. In other words, he has barely begun to bend time to his will.

Ray Kurzweil does not own a crystal ball. The secret to his forecasting success is “exponential thinking.”

Our minds are trained to see the world linearly. If you drive at this speed, you will reach your destination at this time. But technology evolves exponentially. Kurzweil calls this the Law of Accelerating Returns.

He leans back in his chair to retrieve his cellphone and holds it aloft between two fingers. “This is several billion times more powerful than the computer I used as an undergraduate,” he says, and goes on to point out that the device is also about 100,000 times smaller. Whereas computers once took up entire floors at university research halls, far more advanced models now fit in our pockets (and smaller spaces) and are becoming more miniscule all the time. This is a classic example of exponential change.

The Human Genome Project is another. Launched in 1990, it was billed from the start as an ambitious, 15-year venture. Estimated cost: $3 billion. When researchers neared the time line’s halfway point with only 3 percent of the DNA sequencing finished, critics were quick to pounce. What they did not see was the annual doubling in output. Thanks to increases in computing power and efficiency, 3 percent became 6 percent and then 12 percent and so on. With a few more doublings, the project was completed a full two years ahead of schedule.

That is the power of exponential change.

“If you take 30 steps linearly, you get to 30,” Kurzweil says. “If you take 30 steps exponentially, you’re at a billion.”

The fruits of these accelerating returns are all around us. It took more than 15 years to sequence HIV beginning in the 1980s. Thirty-one days to sequence SARS in 2003. And today we can map a virus in a single day.

While thinking about the not-too-distant future, when virtual reality and self-driving cars, 3-D printing and Google Glass are norms, Kurzweil dreams of the next steps. In his vision, we’re rapidly approaching the point where human power becomes infinite.

Holding the phone upright, he swipes a finger across the glass.

“When I do this, my fingers are connected to my brain,” Kurzweil says. “The phone is an extension of my brain. Today a kid in Africa with a smartphone has access to all of human knowledge. He has more knowledge at his fingertips than the president of the United States did 15 years ago.” Multiplying by exponents of progress, Kurzweil projects continued shrinkage in computer size and growth in power over the next 25 years. He hypothesizes microscopic nanobots—inexpensive machines the size of blood cells—that will augment our intelligence and immune systems. These tiny technologies “will go into our neocortex, our brain, noninvasively through our capillaries and basically put our neocortex on the cloud.”

Imagine having Wikipedia linked directly to your brain cells. Imagine digital neurons that reverse the effects of Parkinson’s disease.Maybe we can live forever.

He smiles, letting the sweep of his statements sink in. Without question, it is an impressive bit of theater. He loves telling stories, loves dazzling people with his visions. But his zeal for showmanship has been known to backfire.

The biologist P.Z. Myers has called him “one of the greatest hucksters of the age.” Other critics have labeled him crazy and called his ideas hot air. Kurzweil’s public pursuit of immortality doesn’t help matters. In an effort to prolong his life, Kurzweil takes 150 supplements a day, washing them down with cup after cup of green tea and alkaline water. He monitors the effects of these chemistry experiments with weekly blood tests. It’s one of a few eccentricities.

“He’s extremely honest and direct,” Ptolemy says of his friend’s prickly personality. “He talks to people and if he doesn’t like what you’re saying, he’ll just say it. There’s no B.S. If he doesn’t like what he’s hearing, he’ll just say, ‘No. Got anything  else?’”

But it’s hard to argue with the results. Kurzweil claims 86 percent of his predictions for the year 2009 came true. Others insist the figure is actually much lower. But that’s just part of the game. Predicting is hard work.

“He was considered extremely radical 15 years ago,” Ptolemy says. “That’s less the case now. People are seeing these technologies catch up—the iPhone, Google’s self-driving cars, Watson [the IBM computer that bested Jeopardy genius Ken Jennings in 2011]. All these things start happening, and people are like, ‘Oh, OK. I see what’s going on.’”

Ray Kurzweil was born into a family of artists. His mother was a painter; his father, a conductor and musician. Both moved to New York from Austria in the late 1930s, fleeing the horrors of Hitler’s Nazi regime. When Ray was 7 years old, his maternal grandfather returned to the land of his birth, where he was given the chance to hold in his hands documents that once belonged to the great Leonardo da Vinci—painter, sculptor, inventor, thinker. “He described the experience with reverence,” Kurzweil writes, “as if he had touched the work of God himself.”

Ray’s parents raised their son and daughter in the Unitarian Church, encouraging them to study the teachings of various religions to arrive at the truth. Ray is agnostic, in part, he says, because religions tend to rationalize death; but like Da Vinci, he firmly believes in the power of ideas—the ability to overcome pain and peril, to transcend life’s challenges with reason and thought. “He wants to change the world—impact it as much as possible,” Ptolemy says. “That’s what drives him.”

Despite what his critics say, Kurzweil is not blind to the threats posed by modern science. If nanotechnology could bring healing agents into our bodies, nano-hackers or nano-terrorists could spread viruses—the literal, deadly kind. “Technology has been a double-edged sword ever since fire,” he says. “It kept us warm, cooked our food, but also burned down our villages.” That doesn’t mean you keep it under lock and key.

In January of 2013, Kurzweil entered the next chapter of his life, dividing his time between Waltham and San Francisco, where he works with Google engineers to deepen computers’ understanding of human language. “It’s my first job with a company I didn’t start myself,” he deadpans. The idea is to move the company beyond keyword search, to teach computers how to grasp the meaning and ideas in the billions of documents at their disposal, to move them one more step forward on the journey to becoming sentient virtual assistants—picture Joaquin Phoenix’s sweet-talking laptop in 2013’s Kurzweil-influenced movie Her, a Best Picture nominee.

Kurzweil had pitched the idea of breaking computers’ language barrier to Page while searching for investors. Page offered him a full-time salary and Google-scale resources instead, promising to give Kurzweil the independence he needs to complete the project. “It’s a courageous company,” Kurzweil says. “It has a biz model that supports very widespread distribution of these technologies. It’s the only place I could do this project. I would not have the resources, even if I raised all the money I wanted in my own company. I wouldn’t be able to run algorithms on a million computers.”

That’s not to say Page will sit idle while Kurzweil toils away. In the last year, the Google CEO has snapped up eight robotics companies, including industry frontrunner Boston Dynamics. He paid $3.2 billion for Nest Labs, maker of learning thermostats and smoke alarms. He scooped up the artificial intelligence startup DeepMind and lured Geoffrey Hinton, the world’s foremost expert on neural networks—computer systems that function like a brain—into the Google fold.

Kurzweil’s ties to Page run deep. Google (and NASA) provided early funding for Singularity University, the education hub/startup accelerator Kurzweil launched with the XPRIZE’s Peter Diamandis to train young leaders to use cutting-edge technology to make life better for billions of people on Earth.

Kurzweil’s faith in entrepreneurship is so strong that he believes it should be taught in elementary school.

Why?

Because that kid with the cellphone now has a chance to change the world. If that seems far-fetched, consider the college sophomore who started Facebook because he wanted to meet girls or the 15-year-old who recently invented a simple new test for pancreatic cancer. This is one source of his optimism. Another? The most remarkable thing about the mathematical models Kurzweil has assembled, the breathtaking arcs that demonstrate his thinking, is that they don’t halt their climb for any reason—not for world wars, not for the Great Depression.

Once again, that’s the power of exponential growth.

“Things that seemed impossible at one point are now possible,” Kurzweil says. “That’s the fundamental difference between me and my critics.” Despite the thousands of years of evolution hard-wired into his brain, he resists the urge to see the world in linear fashion. That’s why he’s bullish on solar power, artificial intelligence, nanobots and 3-D printing. That’s why he believes the 2020s will be studded with one huge medical breakthrough after another.

“There’s a lot of pessimism in the world,” he laments. “If I  believed progress was linear, I’d be pessimistic, too. Because we would not be able to solve these problems. But I’m optimistic—more than optimistic: I believe we will solve these problems because of the scale of these technologies.”

He looks down at his watch yet again. Mickey Mouse peeks out from behind the timepiece’s sweeping hands. “Just a bit of whimsy,” he says.

Nearly an hour has passed. The world has changed. It’s time to get on with his day.

Post date:

Oct 9, 2014

This article can also be found at http://www.success.com/article/ray-kurzweil-the-exponential-mind

Michio Kaku on the Technological Singularity and Merging with Machines

Even thought I don’t agree with some of the stances Michio Kaku takes on emergent technologies (some of his predictions are a bit linear for my taste), I still consider myself a fan of his work and I always respect what he has to say.

The Technological Singularity and Merging With Machines

The term “singularity,” which is often heard today, comes originally from my field, theoretical physics. It denotes a point in space and time where the gravitational field becomes infinite. At the center of a black hole, for example, we might find a singularity. It also refers to a mathematical term where a certain function also becomes infinite. But the type of singularity that you have probably been hearing about the most lately is called “The Technological Singularity” and although its not a new concept, it’s definitely becoming more of a mainstream topic of conversation.

Countless books on the subject are being published on a consistent basis, and Ray Kurzweil just recently launched his documentary, “The Transcendent Man” which shares his vision of a world in which humans merge with machines and is currently screening in sold-out screenings around the planet, web forums, blogs and video sites.

Recently it was part of a TIME Magazine cover story entitled “2045: The Year Man Becomes Immortal” which includes a five page narrative. Not to mention that there are an increased number of institutes, dozens of annual singularity conferences and even the 2008 founding of the Singularity University by X-Prize’s Peter Diamandis & Ray Kurzweil which is based at the NASA Ames campus in Silicon Valley. The Singularity University offers a variety of programs including one in particular called “The Exponential Technologies Executive Program” which they state has a main goal to “educate, inform, and prepare executives to recognize the opportunities and disruptive influences of exponentially growing technologies and understand how these fields affect their future, business, and industry.”

My television series Sci Fi Science, on the The Science Channel aired an episode entitled A.I. Uprising which maintained a focus on the coming technological singularity and on the fear that mankind will one day create a machine that could quite possibly threaten our very existence. One cannot rule out the point in time when machine intelligence will eventually surpass human intelligence. These super intelligent machine creations will become self-aware, have their own agenda and may even one day be able to create copies of themselves that are more intelligent than they are.

Common questions I’m often asked are:

  • When will this tipping point transpire?
  • What are the implications for the creation of a self-aware machine?
  • What does it mean for the advancement of the human race i.e. On what level will humans merge with them?
  • What happens when machine intelligence exponentially surpasses human intelligence?

But the road to the singularity is not going to be a smooth one. As I originally mentioned in my Big Think interview, “How to Stop Robots from Killing Us“, Moore’s law states that computing power doubles about every 18 months and it’s a curve that has held sway for about 50 years. Chip manufacturing and the technology behind the development of transistors will eventually hit a wall where they are just too small, too powerful and generate way too much heat resulting in a chip meltdown and electrons leaking out due to the Heisenberg Uncertainty Principle.

Needless to say, it’s time to find a replacement for silicon and it’s my belief that eventual replacement will essentially take things to the next level. Graphene is a potential candidate replacement and far superior to that of silicon but the technology to construct a large scale manufacturing of graphene (carbon nanotube sheets) is still up in the air. It’s not clear at all what will replace silicon, but a variety of technologies have been proposed, including molecular transistors, DNA computers, protein computers, quantum dot computers, and quantum computers. However, none of them is ready for prime time. Each has its own formidable technical problems which, at present, keep them on the drawing boards.

Well, because of all these uncertainties, no one knows exactly when this tipping point will happen although there are many predictions when computing power will finally meet and then eventually tower above that of human intelligence. For example, Ray Kurzweil whom I’ve interviewed several times on my radio programs stated in his Big Think interview that he feels by 2020 we’ll have computers that are powerful enough to simulate the human brain but we won’t be finished with the reverse engineering of the brain until about the year 2029. He also estimates that by the year 2045, we’ll have expanded the intelligence of our human machine civilization a billion fold.

But in all fairness, we should also point out there are many different points of view on this question. The New York Times asked a variety of experts at the recent Asilomar Conference on AI in California when machines might become as powerful as humans. The answer was quite surprising. The answers ranged from 20 years to 1,000 years. I once interviewed Marvin Minsky for my national science radio show and asked him the same question. He was very careful to say that he does not make predictions like that.

We should also point out that there are a variety of measures proposed by AI specialists about what do to about it. One simple proposal is to put a chip in the brains of our robots, which automatically shut them off if they get murderous thoughts. Right now, our most advanced robots have the intellectual capability of a cockroach (a mentally challengead cockroach, at that). But over the years, they will become as intelligent as a mouse, rabbit, fox, dog, cat, and eventually a monkey. When they become that smart, they will be able to set their own goals and agendas, and could be dangerous. We might also put a fail safe device in them so that any human could shut them off by a simple verbal command. Or, we might create an elite corps of robot fighters, like in Blade Runner, who have superior powers and can track down and hunt for errant robots.

But the proposal that is getting the most traction is merging with our creations. Perhaps one day in the future, we might find ourselves waking up with a superior body, intellect, and living forever. For more, visit the Facebook Fanpage for my latest book, Physics of the Future.

This article can also be found at http://bigthink.com/dr-kakus-universe/the-technological-singularity-and-merging-with-machines

Video Info:

IBM’s Jon Iwata on the Intelligence of Watson

Published on Aug 5, 2014

Jon Iwata, Senior VP of Marketing and Communications at IBM, shares the origins and purpose of IBM’s supercomputer Watson.

Don’t miss new Big Think videos!  Subscribe by clicking here: http://goo.gl/CPTsV5

Transcript: Some years ago the grand challenge in computer science, one of them, was to build a machine that could beat a chess grandmaster. Some may remember this. And we built machines that got better and better at it. But finally built a machine back in the 90s called Deep Blue and it played against Gary Kasparov and it beat Gary Kasparov and I think he’s still quite upset about it. Why did we build that machine? Well it really wasn’t to play chess. It was to take a real challenge, chess, and it would force advances in computer science. And it worked quite well.

Well, that was chess and that was the nature of the grand challenge back then. But today this explosion of data, most of it unstructured data, natural language, Tweets, blog posts, medical images, things like that. Very difficult for traditional computers to understand. It could store it. It could process this data but it doesn’t know what the data really tells you because it’s unstructured. The research team some years ago said what’s a way for us to create a system that is ideal for the coming world of unstructured big data. Natural language. Making sense of a mountain of data. What could we do to force ourselves to solve those problems. And they hit upon the game show Jeopardy. Now I’ve got to tell you that when they came by to see me at IBM corporate headquarters, I don’t know, six years ago, seven years ago, maybe longer and they said we’ve identified the next big challenge similar to the chess machine that beat Kasparov.

I was thinking, you know, wow they’re going to go after some really sophisticated high minded, you know, game theory thing. And they came in and said it was going to be Jeopardy. Now I wasn’t really a Jeopardy watcher back then. I said you mean the TV quiz show? And they said yes. And I said well that seems to be – they remind me of this now – that doesn’t seem to be, you know, very sophisticated or challenging. And they went on to explain to me – and I, of course, had to acknowledge many times to them since then it’s really hard. It’s really hard to win on Jeopardy. And it’s hard for a human and it’s almost impossible for a machine. Because if you play Jeopardy or if you’re just kind of familiar with it, you have to understand puns and allegories, popular culture, rhymes, allusions, double entendres. These are things that computers are baffled by, even some humans. So they went after this and they struck a collaboration with the producers of Jeopardy and they build this system called Watson and it played the two greatest human champions, Ken Jennings and Brad Rutter, some years ago.

I was there watching it do its thing live and it won. And the remarkable thing about Watson – that’s the name of the system – we believe it’s the first cognitive computer and what is that? It is a system that isn’t programmed. It is a system that learns. It is a system that improves itself by ingesting all the data it can and by being trained by humans. And this is a profound shift in computation because whether it’s a powerful supercomputer or it’s your iPad, all of those systems are programmed to do what they do. Your iPad can only do what a software engineer designed it to do. That is not the case with Watson. Watson improves itself through learning. And it is therefore incredibly important in this world of big data, most of it unstructured. We will need systems like Watson to make sense of all the data that’s being produced.

Watson triggers some very strong emotions in people when they learn about it or see it or interact with it. It talks, it answers questions with great confidence. If it doesn’t know the answer to the question it sometimes asks you another question to help it reason on the question. It generates hypotheses and tells you it’s level of confidence in its recommendations. And so we as humans – we use all kinds of words that we’re familiar with to try to understand what this thing is doing. We say “is it thinking? Is it sentient? Does it create?” Some people get very excited and optimistic because Watson seems to be the answer to a lot of problems. It never forgets. A doctor can’t read every piece of medical literature that’s created every day. Watson can. By the way, Watson’s at work at Memorial Sloan Kettering Cancer Research, at MD Anderson Cancer Research, at the Cleveland Clinic and at Walpoint learning medicine.
[TRANSCRIPT TRUNCATED]

Directed/Produced by Jonathan Fowler, Victoria Brown, and Dillon Fitton

  • Category

  • License

    • Standard YouTube License

Transcendent Man Film Trailer

Uploaded on Feb 20, 2009

Transcendent Man by director Barry Ptolemy introduces the life and ideas of Ray Kurzweil, the renowned futurist who journeys the world offering his vision of a future in which we will merge with our machines, can live forever, and are billions of times more intelligent…all within the next thirty years.