Future Tech… From 2017

Self-driving cars, low cost genome sequencing, robotic surgery, free energy… ok, near free energy…  These are some of the topics discussed in this video compilation by Jonas Bjerg.  The video features clips from Peter Diamandis and Elon Musk and focuses on presently developing technologies and the near future plans to push these technologies to ubiquitous use with the promise of individual abundance.  I’ll leave it to you to consider the ramifications of a transition to a post scarcity economy, but I would like to note that many of these technologies, while potentially beneficial to humanity, are disruptive technologies.  There are currently test programs involving universal basic income (UBI, also mentioned in the video) and it appears we are on the threshold (within the next couple decades) of needing some form of UBI to support all but the most creative of individuals… then again, I’ve recently seen computer programs that might even call the need for creative individuals into question.  I imagine a time in the not so distant future when humans will need to “merge with the machines” as Ray Kurzweil says, or resign ourselves to primitivism or even obsolescence (to avoid the worst case Hollywood-esque scenario) while the posthumans do all the work above our pay grade (of course, one hopes pay is not a requirement for a prosperous life in the future).  It seems this scenario is a far future concept, however a look at the technology being implemented right now implies change is coming sooner than we might think.

 


Runtime: 14:52


This video can also be found here.  If you like this video, make sure to stop by and give them a like.

Video Info:

Published on Dec 3, 2017

This is a summary of everything future discussed at the Singularity University summit 2017, Ted talks with Elon Musk 2017, World Government Summit 2017 and Peter Diamandis views on HOW ABUNDANCE WILL CHANGE THE WORLD as we know it.

SUBSCRIBE HERE: http://youtube.com/c/jonasbjerg?sub_c…

Links:
https://www.youtube.com/watch?v=3cXPW…
(Singularity university summit – Peter Diamandis)
The demonetization of living
Maslows pyramid of needs are trending towards 0-cost
Abundance and nanotechnology (nanobots)
Raw material cost + energy cost + Information = COST 3:47
In the back of abundance 4:00
Most people will have devices for free so that you can buy stuff from them and they can collect data 7:00
Data is the new gold 7:30
Free content 1b hours of free content pr day.
8000X more energy hitting the surface of the planet than we consume, and the poorest have the most sun 8:00
solar roads 9:30
2.9 cents pr kWh
Giga factory in Reno 10:00
cars from 1904 to 1917 100% switch 11:00
by 2025 car ownership will be dead: 12:20
autonomy will demonetize housing 13:20
house being 3d printed 14:26
literacy to basic reading writing in 18 months 16:03
demonetization of healthcare, deep learning protocols 17:00
Watson diagnosed rare leukaemia 18:00
Cost of genome sequencing Morse law 19:05
Sequenced when born, stop what you will get sick from before people get sick
Surgery 20:00
Rapidly demonetizing trends everywhere 21:30
Not scared of AI terminator 23:00
Job loss 24:00
Demonetize the cost of living, (education, entertainment, food etc)
Psychological impact to losing job 24:30
AI software shells 27:30 within ten years
UBI Universal Basic Income

https://www.youtube.com/watch?v=zIwLW…
(Elon Musk Building)
10fold improvement in cost of digging pr. Mile
no sound
The boring company
Autonomy brings more cars on the roads
Every big car company has announced electric cars within 10 years 12:00
By the end of 2017 self-driving coast to coast 15:00
Free self-driving cars 19:30
Self-driving trucks tesla semi out torc any diesel semi uphill 20:30
Solar panels 22:00
Most houses have enough roof area to power all the needs of the house 25:30
Giga factory 100 27:00
100 gWh pr week
1 build announcing another 5 this year 29:00
reusability rocket 33:00

https://www.youtube.com/watch?v=rCoFK…
(Elon Musk World Government Summit 2017)
Multi planetary species is life insurance for life collectively 2:30
Ten years from now full autonomy cars will only be build 8:30
Elon building tunnel under Washington 14:20
3d building, 2d road network 16:00
12-15% driving as a job 18:20
over 2B vehicles in the world 19:00
100M total new vehicle production cap 19:00
life of car 20-25 years 19:00
Prepare government for the future 20:00
AR regulation
Transport 21:00 electric over 30-40 years
Demand for electricity will increase rapidly. Total energy usage = 1/3 electricity 1/3 transport 1/3 heating over time that will predominantly be all electricity 21:30
Universal basic income, no choice 22:50
Fewer and fewer jobs that a robot cannot do better
The output of goods and services will be extremely high with automation, so they will come abundance and come really cheap.
The harder challenge is, how do people then have meaning?
To some degree we are already a cyborg 25:21
Reusable rockets, cost to fly close to plane 29:00

Social Media:
Twitter:
https://www.twitter.com/jonasislive

Snapchat:
Jonasislive

Instagram:
https://www.instagram.com/jonasislive

My gear:
#1 Panasonic Lumix G series (G85/G81)
http://amzn.to/2ruwFTN

#2 Canon g7x mark II
http://amzn.to/2rpzd6D
http://amzn.to/2qk4Cai
http://amzn.to/2qrrLCM

#3 SJCAM 4000
http://amzn.to/2rpfDHr
http://amzn.to/2rpqt0f
http://amzn.to/2qk4W8P

#4 regular iPhone camera
http://amzn.to/2qrs68w
http://amzn.to/2rpc582
http://amzn.to/2qjW82J

#5 huanqi 899b drone
http://amzn.to/2qG2PfR

The Social Futurist policy toolkit by Amon Twyman

This is an article by Amon Twyman at the Institute for Ethics & Emerging Technologies (IEET).  The article (called The Social Futurist Policy Toolkit) lays out a basic blueprint for Social Futurist policy.  Basically, it’s a kind of proposal for post-scarcity economics.  


The Social Futurist policy toolkit


Amon Twyman

By Amon Twyman
wavism.wordpress.com

Posted: Apr 27, 2014

In a recent blog post and IEET article, I laid out an extremely general critique of Capitalism’s place within our society, and the barest outline of an alternative known as Social Futurism. The essence of that article was that Capitalism does certain things very well but it cannot be paused or adjusted when its effects become problematic, that rapid technological change appears to be on the verge of making certain alternatives viable, and that unfortunately we may be forced to fight for our right to personally choose those alternatives.

That article was necessarily brief and very broad, which did not allow me the opportunity to address policy details of any sort. It would be unfortunate if people thought that meant Social Futurism has no specific ideas at its disposal, so I want to lay out a kind of “policy toolkit”, here. The following policy categories are not compulsory features of any Social Futurist movement or group, but are more like basic building blocks from which specific policy configurations could be adapted to local conditions. Similarly, the toolkit as it currently stands is in no way considered exhaustive.

It is my intent that this toolkit should form a kind of bridge between the broadest, most general level of political discussion on the one hand, and the development of specific policies for local groups on the other. The six basic policy categories are only very briefly discussed below, but will each soon be analysed fully by the WAVE research institute.

Finally, none of the ideas presented in this article are new (section 6 being my only novel contribution), but this mix is seldom presented in a single ‘chunk‘ that can be easily memorised and communicated. It is my hope that in time the label “Social Futurism” may act as the natural intersection of these disparate-but-compatible ideas, enabling people to refer to an array of possible solutions to major problems in two words rather than two thousand.

1. Evidence, Balance, & Transition

All of the policies in this toolkit should be approached from a pragmatic and flexible (rather than an ideologically constrained) point of view. When trying to be pragmatic and flexible, our main concern is with policies that actually solve problems, so the use of empirical evidence is central to Social Futurism. Policy development and review should emphasise the setting of quantifiable goals and application of empirical evidence wherever that is an option, to encourage policy that evolves to better meet our goals over time.

In this vein, we should seek to find optimal balances between extreme ideological positions, to the extent that any given choice may be viewed as a continuum rather than a binary choice. An extremely important example is the question of transition, which is to say the process of development from our current PEST (political, economic, social, technological) situation to a more efficient and just society. Often political questions are depicted as a false dichotomy, or choice between things as they are and radical utopias entirely disconnected from current reality. What is both preferable and more tractable is an intelligent balance of the past and future, in the form of a pragmatic transition phase.

For example, sections 2-4 below propose a series of economic adjustments to society. From the perspective of someone invested in the status quo, they are extremely radical suggestions. From the perspective of a radical utopian, they are half-measures at best. From a Social Futurist perspective, they are required to maximise the likelihood of a better society actually coming into existence, while attempting to minimise the risk of severe societal destabilisation caused by rapid and untested change. My own vision of a societal transition phase follows an observation from Ray Kurzweil, in which change often takes longer than anticipated, but also ends up being much deeper than anticipated, meaning that focus on a transition phase may allow us to work toward truly radical transformative change in the longer term.

In short, the effectiveness of our methods should be tested by looking at evidence, we should balance our policies in a flexible and pragmatic manner, and we should seek a staged transition toward a better future rather than risk critically destabilizing society.

2. Universal Basic Income & LVAT

A minimal, “safety net” style Universal Basic Income should be established. This is as opposed to putting undue strain on the economy by introducing a basic income larger than is required to satisfy essential living requirements. Where possible, the UBI should be paid for by a combination of dismantling welfare bureaucracies, and Land Value & Automation Taxes (LVAT).

LVAT is the extension of traditional Land Value Tax to include a small tax on every unit of workplace automation equivalent to a single human being replaced. This extension of LVT is intended to harness the economic momentum of workplace automation, which is expected to be the principal cause of technological unemployment in coming decades. The tax should be considerably less than the cost of hiring a human, thus causing no disincentive to automation (some would argue that any tax would disincentivize automation, but our goal is not to encourage automation, and as long as automation is cheaper than human labour it will win out). The LVAT would take the place of increasing numbers of arbitrary taxes on goods and services which are currently being added and increased to shore up Western economies.

Social Futurism is compatible with private property ownership and does not advocate property confiscation. Wealth redistribution is only advocated to the degree that it can be achieved through LVAT & UBI as described above. The extent to which people should be able to choose if, how, and to whom they pay tax is addressed in section 6. It is also worth noting here that where a functional equivalent of UBI exists (e.g. citizen shares in Distributed Autonomous Cooperatives) which is proven more effective, then Social Futurists should favour the more effective solution as per point 1.

3. Abolition of Fractional Reserve Banking

Fractional Reserve Banking is the process by which banks are required to hold only a fraction of their customers’ deposits in reserve, allowing the money supply to grow to a multiple of the base amount held in reserve. Through this practice, central banks may charge interest on the money they create (thereby creating a debt which can never be repaid, across society as a whole) and expose the entire economy to risk when they cannot meet high demand for withdrawals. Fractional Reserve Banking fosters potentially critical risk to the entirety of society for the benefit of only a tiny proportion of citizens, and therefore should be abolished. The alternative to Fractional Reserve Banking is Full Reserve or 100% Reserve Banking, in which all banks must hold the full amount of deposits in reserve at all times.

Full Reserve Banking is much more conservative than Fractional Reserve Banking, and would signal an end to “easy credit”. In turn, it would afford enough stability to see our society through a sustainable transition phase, until technological post-scarcity makes reliance on traditional banking systems and the Capitalist principle of surplus value itself unnecessary.

4. Responsible Capitalism, Post-Scarcity, & Emergent Commodity Markets

Social Futurist policy must favour the encouragement of responsible trade and strong regulation of reckless behaviour, with an eye to making Capitalism an engine of society rather than its blind master. To this end, it should be Social Futurist policy that all companies that wish to operate within any given community must be registered with the appropriate regulation bodies employed by that community. Non-regulation and self-regulation by industries which are not accountable to the communities they affect is unacceptable. (For the purposes of this brief statement I have conflated Capitalism and markets, despite the fact that trade existed millennia before the organization of society around profit based on Capital investment. These issues will be treated separately and extensively, later).

Where possible, Social Futurists should advocate the transition to non-monetary peer-to-peer resource management under post-scarcity conditions. In other words, we should seek to avoid the creation or maintenance of artificial scarcity in essential resources. A continuing place for trade even under post-scarcity conditions is acknowledged and encouraged where it reduces artificial scarcity, promotes technical innovation, and serves the needs and directives of the community. Emergent commodities (e.g. natural artificial scarcities such as unique artworks) will need a framework for responsible trade even under optimal post-scarcity conditions, so it behooves us to develop such frameworks now, in the context of contemporary Capitalism.

5. Human autonomy, privacy, & enhancement

Social Futurism incorporates the transhumanist idea that the human condition can and should be improved through the intelligent and compassionate application of technology. We also strongly emphasise voluntarism, and in combination these things necessitate the championing of people’s rights over their own bodies and information. It should be Social Futurist policy to oppose any development by which people would lose individual sovereignty or involuntarily cede ownership of their personal information. Social Futurists must also defend the individual’s right to modify themselves by technological means, provided that the individual is a mentally competent consenting adult and the modification would not pose significant risk of harm to others.

6. Establishment of VDP (Virtual, Distributed, Parallel) States

The principle of subsidiarity holds that organizational responsibility should be devolved to the lowest or most local level capable of dealing with the situation. In other words, power should be decentralised, insofar as that doesn’t diminish our ability to face challenges as a society.

For example, local governance issues should be handled by local rather than national-level government where possible. Social Futurism takes subsidiarity to its logical conclusion, by insisting that people should have the right to govern their own affairs as they see fit, as long as by doing so they are not harming the wider community. On the other side of the coin, broader (e.g. national and transnational) levels of governance would be responsible for issues that local organizations and individuals could not competently face alone.

Where global governance is needed, the model should be one of cooperating global agencies focused on a specific area of expertise (e.g. the World Health Organization), rather than a single government acting in a centralised manner to handle all types of issue. In this way, decentralization of power applies even when an issue cannot be resolved on the local level.

In order to encourage the development of such a system, we advocate the establishment of communities with powers of self-governance known as VDP States, where VDP stands for “Virtual, Distributed, Parallel”. ‘Virtual’ refers to online community, orthogonal to traditional geographic territories. ‘Distributed’ refers to geographic States, but ones where different parts of the community exist in different locations, as a network of enclaves. ‘Parallel’ refers to communities that exist on the established territory of a traditional State, acting as a kind of organizational counterpoint to that State’s governing bodies. Two or three of these characteristics may be found in a single VDP State, but it is expected that most such communities would emphasise one characteristic over the others. Alternatively, a VDP State may emphasise different characteristics at different stages in its development.

Given Social Futurist emphasis on voluntarism, VDP State citizenship must be entirely voluntary. Indeed, the entire point of the VDP State is to broaden the range of governance models which people may voluntarily choose to engage with, where they are currently told that they simply have to accept a single model of governance.

As this is clearly a new and experimental approach to governance, it is to be expected that many ideas associated with it are still to be properly developed and tested. Some of these ideas may not meet our own standards of empirical review. However, to briefly anticipate some common objections it is worth noting several points. Firstly, decentralization does not imply an absence of social organization. It simply means that people can exercise more choice in how they engage with society. Secondly, yes it is true that all three of the VDP characteristics have limitations as well as strengths (e.g. difficulty in defending isolated enclaves), but that is why any given VDP State would find the mix of features that suits its purpose and context best. Thirdly, as mentioned earlier in this article, different approaches may be mixed and balanced as necessary, such as a single-location VDPS being used as a template for the later creation of a distributed network of communities. Finally, the VDPS idea is not intended to stand alone but to complement any initiatives which have the potential to maximize its value (Open Source Ecology, for example).

Further development of these ideas will be posted on the WAVE movement blog.

Addendum: A note on Marxism

Below I give an example of the point made in section 1 (about balance and transition), which draws upon a Marxist viewpoint because Social Futurist concerns tend to be shared by Marxists, but the logic would equally apply to movements whose long-term ideals and methods are more like our own, such as The Zeitgeist Movement. I have put this note to one side because I do not want to give an incorrect first impression that Social Futurism is Marxist in nature. It is simply intended to address societal problems which have already been comprehensively analysed by Marxists, so it is worth noting the relevance of their point of view to our own.

Marx argued that the root problem with Capitalism is surplus value. This means that Capitalists (i.e. investors) pay workers only a proportion of the value of what is produced by their work, and the remaining (“surplus”) value is taken as profit by the Capital owning class, along with rent and interest on debts. Marxists assert that workers should collectively own the means of production (i.e. factories, machines, resources, all Capital), thereby ending surplus value and phenomena such as problematic banking practices along with it. From this perspective it might be reasonably suggested that “treating the symptoms” rather than the core disorder would be fruitless (or worse, dangerous), and that citizen benefits of any sort should be paid for by distributing all profit from collectively owned means of production equally.

Without wishing to get into a discussion of whether ideal Marxism is possible or doomed to give rise to historical Communist authoritarianism, I would say that even a benign Marxist revolution would entirely destabilize society if it occurred too quickly. Social Futurism does not deny the Marxist analysis of the problem, but seeks a staged transition to a post-Capitalist society which does not attempt to undermine the entire basis of our current society in a single move. Although an optimal, long-term Social Futurist outcome may not be desirable to some Marxists (and certainly not to historical Stalinists or Maoists), it would definitely involve the eventual transition to democratic, decentralised post-scarcity, and removal of Capitalist surplus value as the central organizational principle of our civilization.

Images:
http://www.deviantart.com/art/Machine-263324468
http://www.deviantart.com/art/Vanolose-Capitalist-409983229
http://www.deviantart.com/art/Network-435271187
http://www.deviantart.com/art/Network-101301763


Dr M. Amon Twyman (BSc, MSc Hons, DPhil) is an Affiliate Scholar of the IEET and a philosopher interested in the impact of technology on society and the human condition. Amon was a co-founder of the UK Transhumanist Association (now known as Humanity+ UK), and went on to establish Zero State and the WAVE research institute.


 

This article can also be found at http://ieet.org/index.php/IEET/more/twyman20140427

The Future of Jobs: The Onrushing Wave from The Ecomomist

This is an article called “The Future of Jobs: The Onrushing Wavethe Economist.  Singularity talk aside, even with our current technologies we are seeing a rapidly changing economy.  To not be aware of the changes already occurring in the world today is to set yourself up for some serious potential financial problems.  Who knows, we might go ‘post scarcity‘ overnight someday in the future and money won’t be an issue anymore, but I certainly wouldn’t bank on that just yet.

The future of jobs

The onrushing wave

Previous technological innovation has always delivered more long-run employment, not less. But things can change

IN 1930, when the world was “suffering…from a bad attack of economic pessimism”, John Maynard Keynes wrote a broadly optimistic essay, “Economic Possibilities for our Grandchildren”. It imagined a middle way between revolution and stagnation that would leave the said grandchildren a great deal richer than their grandparents. But the path was not without dangers.

One of the worries Keynes admitted was a “new disease”: “technological unemployment…due to our discovery of means of economising the use of labour outrunning the pace at which we can find new uses for labour.” His readers might not have heard of the problem, he suggested—but they were certain to hear a lot more about it in the years to come.

For the most part, they did not. Nowadays, the majority of economists confidently wave such worries away. By raising productivity, they argue, any automation which economises on the use of labour will increase incomes. That will generate demand for new products and services, which will in turn create new jobs for displaced workers. To think otherwise has meant being tarred a Luddite—the name taken by 19th-century textile workers who smashed the machines taking their jobs.

For much of the 20th century, those arguing that technology brought ever more jobs and prosperity looked to have the better of the debate. Real incomes in Britain scarcely doubled between the beginning of the common era and 1570. They then tripled from 1570 to 1875. And they more than tripled from 1875 to 1975. Industrialisation did not end up eliminating the need for human workers. On the contrary, it created employment opportunities sufficient to soak up the 20th century’s exploding population. Keynes’s vision of everyone in the 2030s being a lot richer is largely achieved. His belief they would work just 15 hours or so a week has not come to pass.

When the sleeper wakes

Yet some now fear that a new era of automation enabled by ever more powerful and capable computers could work out differently. They start from the observation that, across the rich world, all is far from well in the world of work. The essence of what they see as a work crisis is that in rich countries the wages of the typical worker, adjusted for cost of living, are stagnant. In America the real wage has hardly budged over the past four decades. Even in places like Britain and Germany, where employment is touching new highs, wages have been flat for a decade. Recent research suggests that this is because substituting capital for labour through automation is increasingly attractive; as a result owners of capital have captured ever more of the world’s income since the 1980s, while the share going to labour has fallen.

At the same time, even in relatively egalitarian places like Sweden, inequality among the employed has risen sharply, with the share going to the highest earners soaring. For those not in the elite, argues David Graeber, an anthropologist at the London School of Economics, much of modern labour consists of stultifying “bullshit jobs”—low- and mid-level screen-sitting that serves simply to occupy workers for whom the economy no longer has much use. Keeping them employed, Mr Graeber argues, is not an economic choice; it is something the ruling class does to keep control over the lives of others.

Be that as it may, drudgery may soon enough give way to frank unemployment. There is already a long-term trend towards lower levels of employment in some rich countries. The proportion of American adults participating in the labour force recently hit its lowest level since 1978, and although some of that is due to the effects of ageing, some is not. In a recent speech that was modelled in part on Keynes’s “Possibilities”, Larry Summers, a former American treasury secretary, looked at employment trends among American men between 25 and 54. In the 1960s only one in 20 of those men was not working. According to Mr Summers’s extrapolations, in ten years the number could be one in seven.

This is one indication, Mr Summers says, that technical change is increasingly taking the form of “capital that effectively substitutes for labour”. There may be a lot more for such capital to do in the near future. A 2013 paper by Carl Benedikt Frey and Michael Osborne, of the University of Oxford, argued that jobs are at high risk of being automated in 47% of the occupational categories into which work is customarily sorted. That includes accountancy, legal work, technical writing and a lot of other white-collar occupations.

Answering the question of whether such automation could lead to prolonged pain for workers means taking a close look at past experience, theory and technological trends. The picture suggested by this evidence is a complex one. It is also more worrying than many economists and politicians have been prepared to admit.

The lathe of heaven

Economists take the relationship between innovation and higher living standards for granted in part because they believe history justifies such a view. Industrialisation clearly led to enormous rises in incomes and living standards over the long run. Yet the road to riches was rockier than is often appreciated.

In 1500 an estimated 75% of the British labour force toiled in agriculture. By 1800 that figure had fallen to 35%. When the shift to manufacturing got under way during the 18th century it was overwhelmingly done at small scale, either within the home or in a small workshop; employment in a large factory was a rarity. By the end of the 19th century huge plants in massive industrial cities were the norm. The great shift was made possible by automation and steam engines.

Industrial firms combined human labour with big, expensive capital equipment. To maximise the output of that costly machinery, factory owners reorganised the processes of production. Workers were given one or a few repetitive tasks, often making components of finished products rather than whole pieces. Bosses imposed a tight schedule and strict worker discipline to keep up the productive pace. The Industrial Revolution was not simply a matter of replacing muscle with steam; it was a matter of reshaping jobs themselves into the sort of precisely defined components that steam-driven machinery needed—cogs in a factory system.

The way old jobs were done changed; new jobs were created. Joel Mokyr, an economic historian at Northwestern University in Illinois, argues that the more intricate machines, techniques and supply chains of the period all required careful tending. The workers who provided that care were well rewarded. As research by Lawrence Katz, of Harvard University, and Robert Margo, of Boston University, shows, employment in manufacturing “hollowed out”. As employment grew for highly skilled workers and unskilled workers, craft workers lost out. This was the loss to which the Luddites, understandably if not effectively, took exception.

With the low-skilled workers far more numerous, at least to begin with, the lot of the average worker during the early part of this great industrial and social upheaval was not a happy one. As Mr Mokyr notes, “life did not improve all that much between 1750 and 1850.” For 60 years, from 1770 to 1830, growth in British wages, adjusted for inflation, was imperceptible because productivity growth was restricted to a few industries. Not until the late 19th century, when the gains had spread across the whole economy, did wages at last perform in line with productivity (see chart 1).

Along with social reforms and new political movements that gave voice to the workers, this faster wage growth helped spread the benefits of industrialisation across wider segments of the population. New investments in education provided a supply of workers for the more skilled jobs that were by then being created in ever greater numbers. This shift continued into the 20th century as post-secondary education became increasingly common.

Claudia Goldin, an economist at Harvard University, and Mr Katz have written that workers were in a “race between education and technology” during this period, and for the most part they won. Even so, it was not until the “golden age” after the second world war that workers in the rich world secured real prosperity, and a large, property-owning middle class came to dominate politics. At the same time communism, a legacy of industrialisation’s harsh early era, kept hundreds of millions of people around the world in poverty, and the effects of the imperialism driven by European industrialisation continued to be felt by billions.

The impacts of technological change take their time appearing. They also vary hugely from industry to industry. Although in many simple economic models technology pairs neatly with capital and labour to produce output, in practice technological changes do not affect all workers the same way. Some find that their skills are complementary to new technologies. Others find themselves out of work.

Take computers. In the early 20th century a “computer” was a worker, or a room of workers, doing mathematical calculations by hand, often with the end point of one person’s work the starting point for the next. The development of mechanical and electronic computing rendered these arrangements obsolete. But in time it greatly increased the productivity of those who used the new computers in their work.

Many other technical innovations had similar effects. New machinery displaced handicraft producers across numerous industries, from textiles to metalworking. At the same time it enabled vastly more output per person than craft producers could ever manage.

Player piano

For a task to be replaced by a machine, it helps a great deal if, like the work of human computers, it is already highly routine. Hence the demise of production-line jobs and some sorts of book-keeping, lost to the robot and the spreadsheet. Meanwhile work less easily broken down into a series of stereotyped tasks—whether rewarding, as the management of other workers and the teaching of toddlers can be, or more of a grind, like tidying and cleaning messy work places—has grown as a share of total employment.

But the “race” aspect of technological change means that such workers cannot rest on their pay packets. Firms are constantly experimenting with new technologies and production processes. Experimentation with different techniques and business models requires flexibility, which is one critical advantage of a human worker. Yet over time, as best practices are worked out and then codified, it becomes easier to break production down into routine components, then automate those components as technology allows.

If, that is, automation makes sense. As David Autor, an economist at the Massachusetts Institute of Technology (MIT), points out in a 2013 paper, the mere fact that a job can be automated does not mean that it will be; relative costs also matter. When Nissan produces cars in Japan, he notes, it relies heavily on robots. At plants in India, by contrast, the firm relies more heavily on cheap local labour.

Even when machine capabilities are rapidly improving, it can make sense instead to seek out ever cheaper supplies of increasingly skilled labour. Thus since the 1980s (a time when, in America, the trend towards post-secondary education levelled off) workers there and elsewhere have found themselves facing increased competition from both machines and cheap emerging-market workers.

Such processes have steadily and relentlessly squeezed labour out of the manufacturing sector in most rich economies. The share of American employment in manufacturing has declined sharply since the 1950s, from almost 30% to less than 10%. At the same time, jobs in services soared, from less than 50% of employment to almost 70% (see chart 2). It was inevitable, therefore, that firms would start to apply the same experimentation and reorganisation to service industries.

A new wave of technological progress may dramatically accelerate this automation of brain-work. Evidence is mounting that rapid technological progress, which accounted for the long era of rapid productivity growth from the 19th century to the 1970s, is back. The sort of advances that allow people to put in their pocket a computer that is not only more powerful than any in the world 20 years ago, but also has far better software and far greater access to useful data, as well as to other people and machines, have implications for all sorts of work.

The case for a highly disruptive period of economic growth is made by Erik Brynjolfsson and Andrew McAfee, professors at MIT, in “The Second Machine Age”, a book to be published later this month. Like the first great era of industrialisation, they argue, it should deliver enormous benefits—but not without a period of disorienting and uncomfortable change. Their argument rests on an underappreciated aspect of the exponential growth in chip processing speed, memory capacity and other computer metrics: that the amount of progress computers will make in the next few years is always equal to the progress they have made since the very beginning. Mr Brynjolfsson and Mr McAfee reckon that the main bottleneck on innovation is the time it takes society to sort through the many combinations and permutations of new technologies and business models.

A startling progression of inventions seems to bear their thesis out. Ten years ago technologically minded economists pointed to driving cars in traffic as the sort of human accomplishment that computers were highly unlikely to master. Now Google cars are rolling round California driver-free no one doubts such mastery is possible, though the speed at which fully self-driving cars will come to market remains hard to guess.

Brave new world

Even after computers beat grandmasters at chess (once thought highly unlikely), nobody thought they could take on people at free-form games played in natural language. Then Watson, a pattern-recognising supercomputer developed by IBM, bested the best human competitors in America’s popular and syntactically tricksy general-knowledge quiz show “Jeopardy!” Versions of Watson are being marketed to firms across a range of industries to help with all sorts of pattern-recognition problems. Its acumen will grow, and its costs fall, as firms learn to harness its abilities.

The machines are not just cleverer, they also have access to far more data. The combination of big data and smart machines will take over some occupations wholesale; in others it will allow firms to do more with fewer workers. Text-mining programs will displace professional jobs in legal services. Biopsies will be analysed more efficiently by image-processing software than lab technicians. Accountants may follow travel agents and tellers into the unemployment line as tax software improves. Machines are already turning basic sports results and financial data into good-enough news stories.

Jobs that are not easily automated may still be transformed. New data-processing technology could break “cognitive” jobs down into smaller and smaller tasks. As well as opening the way to eventual automation this could reduce the satisfaction from such work, just as the satisfaction of making things was reduced by deskilling and interchangeable parts in the 19th century. If such jobs persist, they may engage Mr Graeber’s “bullshit” detector.

Being newly able to do brain work will not stop computers from doing ever more formerly manual labour; it will make them better at it. The designers of the latest generation of industrial robots talk about their creations as helping workers rather than replacing them; but there is little doubt that the technology will be able to do a bit of both—probably more than a bit. A taxi driver will be a rarity in many places by the 2030s or 2040s. That sounds like bad news for journalists who rely on that most reliable source of local knowledge and prejudice—but will there be many journalists left to care? Will there be airline pilots? Or traffic cops? Or soldiers?

There will still be jobs. Even Mr Frey and Mr Osborne, whose research speaks of 47% of job categories being open to automation within two decades, accept that some jobs—especially those currently associated with high levels of education and high wages—will survive (see table). Tyler Cowen, an economist at George Mason University and a much-read blogger, writes in his most recent book, “Average is Over”, that rich economies seem to be bifurcating into a small group of workers with skills highly complementary with machine intelligence, for whom he has high hopes, and the rest, for whom not so much.

And although Mr Brynjolfsson and Mr McAfee rightly point out that developing the business models which make the best use of new technologies will involve trial and error and human flexibility, it is also the case that the second machine age will make such trial and error easier. It will be shockingly easy to launch a startup, bring a new product to market and sell to billions of global consumers (see article). Those who create or invest in blockbuster ideas may earn unprecedented returns as a result.

In a forthcoming book Thomas Piketty, an economist at the Paris School of Economics, argues along similar lines that America may be pioneering a hyper-unequal economic model in which a top 1% of capital-owners and “supermanagers” grab a growing share of national income and accumulate an increasing concentration of national wealth. The rise of the middle-class—a 20th-century innovation—was a hugely important political and social development across the world. The squeezing out of that class could generate a more antagonistic, unstable and potentially dangerous politics.

The potential for dramatic change is clear. A future of widespread technological unemployment is harder for many to accept. Every great period of innovation has produced its share of labour-market doomsayers, but technological progress has never previously failed to generate new employment opportunities.

The productivity gains from future automation will be real, even if they mostly accrue to the owners of the machines. Some will be spent on goods and services—golf instructors, household help and so on—and most of the rest invested in firms that are seeking to expand and presumably hire more labour. Though inequality could soar in such a world, unemployment would not necessarily spike. The current doldrum in wages may, like that of the early industrial era, be a temporary matter, with the good times about to roll (see chart 3).

These jobs may look distinctly different from those they replace. Just as past mechanisation freed, or forced, workers into jobs requiring more cognitive dexterity, leaps in machine intelligence could create space for people to specialise in more emotive occupations, as yet unsuited to machines: a world of artists and therapists, love counsellors and yoga instructors.

Such emotional and relational work could be as critical to the future as metal-bashing was in the past, even if it gets little respect at first. Cultural norms change slowly. Manufacturing jobs are still often treated as “better”—in some vague, non-pecuniary way—than paper-pushing is. To some 18th-century observers, working in the fields was inherently more noble than making gewgaws.

But though growth in areas of the economy that are not easily automated provides jobs, it does not necessarily help real wages. Mr Summers points out that prices of things-made-of-widgets have fallen remarkably in past decades; America’s Bureau of Labour Statistics reckons that today you could get the equivalent of an early 1980s television for a twentieth of its then price, were it not that no televisions that poor are still made. However, prices of things not made of widgets, most notably college education and health care, have shot up. If people lived on widgets alone— goods whose costs have fallen because of both globalisation and technology—there would have been no pause in the increase of real wages. It is the increase in the prices of stuff that isn’t mechanised (whose supply is often under the control of the state and perhaps subject to fundamental scarcity) that means a pay packet goes no further than it used to.

So technological progress squeezes some incomes in the short term before making everyone richer in the long term, and can drive up the costs of some things even more than it eventually increases earnings. As innovation continues, automation may bring down costs in some of those stubborn areas as well, though those dominated by scarcity—such as houses in desirable places—are likely to resist the trend, as may those where the state keeps market forces at bay. But if innovation does make health care or higher education cheaper, it will probably be at the cost of more jobs, and give rise to yet more concentration of income.

The machine stops

Even if the long-term outlook is rosy, with the potential for greater wealth and lots of new jobs, it does not mean that policymakers should simply sit on their hands in the mean time. Adaptation to past waves of progress rested on political and policy responses. The most obvious are the massive improvements in educational attainment brought on first by the institution of universal secondary education and then by the rise of university attendance. Policies aimed at similar gains would now seem to be in order. But as Mr Cowen has pointed out, the gains of the 19th and 20th centuries will be hard to duplicate.

Boosting the skills and earning power of the children of 19th-century farmers and labourers took little more than offering schools where they could learn to read, write and do algebra. Pushing a large proportion of college graduates to complete graduate work successfully will be harder and more expensive. Perhaps cheap and innovative online education will indeed make new attainment possible. But as Mr Cowen notes, such programmes may tend to deliver big gains only for the most conscientious students.

Another way in which previous adaptation is not necessarily a good guide to future employment is the existence of welfare. The alternative to joining the 19th-century industrial proletariat was malnourished deprivation. Today, because of measures introduced in response to, and to some extent on the proceeds of, industrialisation, people in the developed world are provided with unemployment benefits, disability allowances and other forms of welfare. They are also much more likely than a bygone peasant to have savings. This means that the “reservation wage”—the wage below which a worker will not accept a job—is now high in historical terms. If governments refuse to allow jobless workers to fall too far below the average standard of living, then this reservation wage will rise steadily, and ever more workers may find work unattractive. And the higher it rises, the greater the incentive to invest in capital that replaces labour.

Everyone should be able to benefit from productivity gains—in that, Keynes was united with his successors. His worry about technological unemployment was mainly a worry about a “temporary phase of maladjustment” as society and the economy adjusted to ever greater levels of productivity. So it could well prove. However, society may find itself sorely tested if, as seems possible, growth and innovation deliver handsome gains to the skilled, while the rest cling to dwindling employment opportunities at stagnant wages.

This article can also be found on the Economist website at http://www.economist.com/news/briefing/21594264-previous-technological-innovation-has-always-delivered-more-long-run-employment-not-less?fsrc=scn/tw/te/pe/ed/